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Abstract—Automatic land cover classification maps were devel-
oped from Airborne Hyperspectral Scanner (HyMAP) imagery ac-
quired May 8, 2000 over Smith Island, VA, a barrier island in the
Virginia Coast Reserve. Both unsupervised and supervised clas-
sification approaches were used to create these products to eval-
uate relative merits and to develop models that would be useful to
natural resource managers at higher spatial resolution than has
been available previously. Ground surveys made by us in late Oc-
tober and early December 2000 and again in May, August, and
October 2001 and May 2002 provided ground truth data for 20
land cover types. Locations of pure land cover types recorded with
global positioning system (GPS) data from these surveys were used
to extract spectral end-members for training and testing super-
vised land cover classification models. Unsupervised exploratory
models were also developed using spatial–spectral windows and
projection pursuit (PP), a class of algorithms suitable for extracting
multimodal views of the data. PP projections were clustered by
ISODATA to produce an unsupervised classification. Supervised
models, which relied on the GPS data, used only spectral inputs
because for some categories in particular areas, labeled data con-
sisted of isolated single-pixel waypoints. Both approaches to the
classification problem produced consistent results for some cat-
egories such asSpartina alterniflora, although there were differ-
ences for other categories. Initial models for supervised classifica-
tion based on 112 HyMAP spectra, labeled in ground surveys, ob-
tained reasonably consistent results for many of the dominant cat-
egories, with a few exceptions. For an invasive plant species,Phrag-
mites australis, a particular concern of natural resource managers,
this approach initially had an excessively high false-alarm rate.
Increasing the number of spectral training samples by an order
of magnitude and making concomitant improvements to the geo-
rectification led to dramatic improvements in this and other cat-
egories. The unsupervised spatial–spectral approach also found a
cluster closely associated withPhragmitespatches near the thicket
boundary, but this approach did not identify the exposedPhrag-
mites. Examples ofin situ reflectance measurements obtained with
an Analytical Spectral Devices FR spectrometer in early May 2001
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are compared against HyMAP image spectra at model-predicted
pixels and at validated GPS waypoints.

Index Terms—Barrier islands, hyperspectral, in situ spectrom-
etry, invasive plant species, land cover classification, neural net-
works, principle component analysis, projection pursuit, super-
vised classification, unsupervised classification.

I. INTRODUCTION: THE VIRGINIA COAST RESERVE

A HYMAP [1], [31] scene of Smith Island, VA, acquired
on May 8, 2000, served as the basis of the present study

(Fig. 1). Smith Island is one of a series of barrier islands in the
Virginia Coast Reserve (VCR) and the site of the University
of Virginia’s ongoing Long Term Ecological Research (LTER)
program [32], [38]. The most extensive survey of the island
dates from 1974 [32], [35] and was based on ground obser-
vations and interpretation of false-color infrared imagery for
a set of 16 barrier islands that encompass the VCR. This his-
torical reference data consisted of 26 land cover types. To de-
velop our automatic land cover classification models, we chose
a somewhat different approach, attempting to achieve species-
level classification in many instances, while considering in some
cases plant communities that were similar to those described in
[35]. Our land cover classification models consisted of 16 to
19 categories. However, for purposes of this introduction, we
have grouped the land cover into five or six principal categories,
some of which equate to those described in [35], while others
are aggregates of several of these categories. New definitions for
coastal vegetation are presently under development by the state
of Virginia [18].

Particularly in wetlands research and coastal applications,
past emphasis has been on either 1) broad-band sensors such
as Landsat TM [16], [28] or 2) hyperspectral sensors at lower
spatial resolution [22]. For modeling regional scales with the
former, the National Oceanic and Atmospheric Administra-
tion’s C-CAP protocol has been widely used. A cornerstone
of this has been the cluster-busting algorithm developed by
Jensen [27], which is a labor-intensive, though highly accurate,
approach. Likewise, in coastal applications, the dominant
approach for hyperspectral modeling has been spectral linear
mixing models (e.g., see [22]) applied to AVIRIS imagery at
resolutions 20 m pixels. Other analyses have considered the
use of vegetation indices for extracting biophysical param-
eters, comparing both Landsat TM and AVIRIS within situ
spectrometry measurements [48]. One of our goals in using a
hyperspectral sensor with a higher spatial resolution of 4.5 m
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Fig. 1. (Left) RGB composite of the red, green, and blue channels from a Landsat Thematic Mapper (TM) image taken in April, 1998 of Northampton County,
VA, showing a subset of the islands known as the Virginia Coast Reserve. Smith Island is highlighted in the box. (Right) RGB composite from 126-channelHyMAP
imagery of Smith Island, VA and the southern portion of Myrtle Island, acquired May 8, 2000. A portion of Myrtle Island has been omitted.

was to be able to discriminate rapidly varying land cover types
seen, for example, in the transition zone from the lagoonal
shore to the upland. On Smith Island, six to seven distinct
vegetation zones may occur in a distance as short as 50–75 m.
Although we do not explore mixture models in the present
study, they will be compared with the methods presented here
in a future publication.

The spatial distribution of land cover types included in our
models varied considerably. Categories such asMyrica cerifera
(bayberry) thicket occur only in the southern end of Smith Is-
land, striating the island in dense bands of vegetation. These
thickets are typically tens of meters in width and can extend
in some instances nearly the width of the island (about 2 km).
Categories such as these, therefore, whose spatial extent is fre-
quently greater than the resolution cell of the sensor (the H-res-
olution case described in [42]) are amenable to modeling that
uses supervised classification, at least in the final stages of pro-
cessing. In contrast, in other areas some vegetation categories
have a spatial extent that is of the order of a pixel or less (the
L-resolution case [42]). In some cases, the spatial extent in one
dimension may be of the order of a pixel or less in one dimen-
sion, while having a length of several pixels or more in the other
dimension. The latter occurs in some instances for the invasive
plant speciesPhragmites australisin the southern end of Smith
Island (not all stands are so narrow; the width varies consider-
ably). In this part of the island,Phragmites australis, where it
occurs, typically forms a narrow band of vegetation in the eco-
tone between the upland thicket and brackish and fresh water

marshes in the swale immediately adjacent. In most cases for
our validation testing, the width of the stands that we consid-
ered was at least a couple of pixels, although it is not uncommon
to find stands whose width (extent perpendicular to the thicket
line) is on the order of a pixel. In a sense, this is the ideal can-
didate for L-resolution methods, which assume that in at least
one dimension the category extent may be a pixel or less, but
the spectral pattern associated with the category is repeated in
some regular spatial distribution that can be detected. This is
our motivation for also considering spatial–spectral models that
use unsupervised feature extraction and classification based on
projection pursuit and pincipal component analysis.

As just mentioned, some vegetation communities have spatial
extents that may be only a few pixels at the HyMAP spatial res-
olution of 4.5 m, so this resolution forms an upper bound on the
ideal spatial resolution. The utility of land cover classification
models is, of course, determined by the end-user [36], [37]. Be-
yond the narrow goal of achieving ecological modeling at high
resolution, there are practical reasons for why using this kind
of data will benefit natural resource managers. For example, as
just described, the invasive plant speciesPhragmites australis
may exist in patches whose spatial extent may be on the order
of the pixel size of HyMAP in at least one dimension. Likewise,
because it has spectral characteristics that are similar to other
wetland plants, it is unlikely that systems with a few broad spec-
tral channels would be able to discriminate it, especially when
it occurs in close proximity, as it often does on Smith Island, to
other vegetation types such as theMyrica ceriferathicket. Al-
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though there is some debate as to how problematicPhragmites
is [39], many natural resource managers agree that it supplants
other wetland types, disrupting ecosystem balance, andPhrag-
mitescontrol and eradication programs are not uncommon.

Even within a single category, variations in spatial extent
occur. For instance, one of the primary constituents of the low
marsh vegetation (Fig. 2),Spartina alterniflora(Smooth Cord-
grass), occurs in large monotypic stands in the northern end of
Smith Island, while at the southern end of the island, it occurs
in one or two narrow bands of vegetation at the water’s edge on
the lagoonal (western) shore, and in small zones in the brackish
swales that cross the island.

High marsh species (Fig. 2) includeSalicornia virginica(Per-
renial Glasswort),Limonium carolinianum(sea lavender),Bor-
richia frutescens(Sea Ox-eye),Iva frutescens(Marsh-elder),
Sueada linearis and Sueada maritima(Sea-blite), andSpartina
patens(Salt-Hay or Saltmeadow Cordgrass).1 The upper end
of the high marsh frequently has a zone of “wrack,” the dead,
matted detritus of the previous year’s growth, which typically
marks the mean high-water line associated with tidal influences.
The swales (Fig. 2) that cross the southern end of Smith Island
contain brackish and fresh-water marshes. Swale vegetation in-
cludesDistichlis spicata(Saltgrass),Spartina patens, Juncus
roemerianus(Needle Rush),Scirpus robustus(Saltmarsh Bul-
rush), andIva frutescens.

Narrow upland zones (Fig. 2) alternate with swales across
the southern end of the island. Here the typical vegetation con-
sists of shrubs such asMyrica cerifera(Bayberry), the dominant
vegetation, andBaccharis halimifolia(Groundsel-tree), with at-
tendant vegetation such asSmilax spp.(Greenbriar). Stands of
hardwoods and Pine, such asPinus taeada(Loblolly pine), also
occur in some of the upland zones. In these areas, it is common
to find shrubs such asMyrica ceriferain the understory.

Flats (Fig. 2) appear throughout the island. These consist of
mudflats, wash flats, and salt flats or salt pannes. Wash flats
result, for example, from sudden storm surge events in which
the dune line is breached. Salt pannes occur in places where
water floods an area and evaporates, leaving behind a signifi-
cant amount of salt. The high salinity tends to kill off most veg-
etation, and typically only the most salt-tolerant plants such as
Salicornia virginicawill survive in small clumps; wash flats are
often predecessors of salt pannes [35].

The beach zone (Fig. 2) is highly variable. In the northern end
of Smith Island, exposed peat outcrops are present in the surf
zone. These are the decomposed residue of what was once salt
marsh, and they serve as a reminder that the island is undergoing
constant change. In the foredune zone (also Fig. 2), “wrack”
is frequently found, and in summer, a low band of herbaceous
vegetation, comprised principally of plants such asCakile eden-
tula (Sea Rocket) andSalsola kali(Russian Thistle). The dune
line (Fig. 2) typically is comprised of plant species such asAm-
mophila breviligulata(American beachgrass),Uniola panicu-
lata (Sea oats),Salidago sempervirens(Salt Marsh Goldenrod),
and in some casesPanicum amarum(Seaside Panicum). The
back dune is dominated by vegetation such asSpartina patens,

1Common names of coastal vegetation may vary somewhat from author to
author as do definitions of species names listed in italics; in this paper, we have
used [15] and [43].

Ammophila breviligulata, andAndropogon spp.(Broomsedge
family).

II. HYMAP DATA FOR SMITH ISLAND, VA

The HyMAP imagery was atmospherically corrected using
ATREM/EFFORT [13] by Analytical Imaging and Geophysics
LLC (AIG) prior to delivery. The Smith Island scene was
acquired at 4.5-m resolution with 128 spectral channels; the
final EFFORT product was the surface reflectance contained in
126 spectral channels ranging from 445–2486 nm. The image
was acquired near high tide, so there is a significant degree of
inundation in the wetlands, especially in the salt marsh. For the
purposes of automated model development, we preprocessed the
data on a per-sample basis in a number of different ways (Fig. 3).
Since the data points labeled in the global positioning system
(GPS) surveys consisted of a mix of both isolated points and
areas, the supervised automatic classification models used only
thesinglepixel spectrumas input,while theunsupervisedmodels
did not need to satisfy this constraint and, therefore, could ingest
both single-pixel spectra and spatial–spectral windows.

III. FIELD OBSERVATIONS: GEOLOCATED SPECTRA

AND IN SITU SPECTROMETRY

We compared the unsupervised and supervised automatic
classification category maps againstin situ observations
made during two days of field observations and GPS surveys
conducted in October and December 2000, a week of surveys
carried out with GPS between May 7–11, 2001, two weeks
of differential GPS (DGPS) surveys conducted during August
20–23 and October 8–12 2001, and again between May 3–5
and May 13–15, 2002. During these trips, typical vegetation
categories were identified, and positions were recorded using
a GPS or DGPS. These same waypoints were also used to
generate supervised classification maps. During the May 7–11,
2001 and May 13–15, 2002 field trips, we also measuredin
situ reflectance with an Analytical Spectral Devices (ASD) FR
spectrometer, which covers a spectral range similar to that of
HyMAP. Our DGPS survey equipment consisted of a Trimble
Geoexplorer 3 and Beacon-on-a-Belt. During these weeks,
we also surveyed four other islands to the extent that time
permitted, taking data on Hog, Cobb, Wreck, and Myrtle, in
addition to Smith. Equipment problems prevented additional
spectral measurements; however, two weeks prior to the
August 2001 survey at the VCR, we were able to acquire ASD
measurements at another site in southern New Jersey. During
the August field trip and one week after the October field trip,
airborne hyperspectral data were acquired by PROBE2 [17]
for all six of the VCR islands in our study area for comparison
against our May 2000 HyMAP data. These PROBE2 data
will be the subject of future papers. This is motivated by our
desire to understand the effect that seasonal changes in the
land cover have on spectral characteristics. As described below,
models that were produced for the spring HyMAP data may
not necessarily apply to data taken in the summer or fall.
Likewise, tidal influences can have a significant impact on
marsh vegetation and their associated spectra because of the
degree of inundation present.
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Fig. 2. Typical Smith Island land cover. (First row, left) Upland zone:Myrica ceriferathickets and some stands of hardwood andPinus taeda(loblolly pine).
(First row, middle) Typical mudflat near salt marsh edge. (First row, right) Peat outcrop in surf zone. (Second row, left) Foredune vegetation: primarily Cakile
edentula(Sea Rocket) (inset) andSalsola kali(Russian Thistle). (Second row, middle) Dune vegetation and nearby backdune: primarilyAmmophila breviligulata
(American Beachgrass) (foreground), and ocassionallyUniola paniculata(Sea oats) (background). (Second row, right) Inland portion of backdune: predominantly
Andropogon spp.(Broomsedge family). (Third row, left)Spartina alterniflora(Smooth Cordgrass), dominant in low marsh; (third row, right)Borrichia frutescens,
typical high marsh plant; (third row, middle) “wrack.” Brackish marsh dwellers: (fourth row, left)Juncus roemerianus(Needle Rush), (fourth row, middle and
inset)Scirpus robustus(Saltmarsh Bulrush), and (fourth row, third column)Phragmites australis, an invasive plant species; (fourth row, fourth column)Distichlis
spicataa dominant swale grass.
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Fig. 3. Processing configurations for automated land cover classification
models. (Top) Supervised models used georeferenced HyMAP spectra labeled
during GPS and DGPS ground surveys. The supervised classifier was BPCE.
Some models used PCA or PP for feature extraction/dimensionality reduction
as a precursor to BPCE. (Bottom) Single-pixel and spatial–spectral windows
were derived from a subset of the HyMAP data for the southern end of Smith
Island. PP-filtered data were passed to ISODATA. For both unsupervised and
supervised approaches, models were produced for the entire island.

We recorded the environment at many of the waypoints using
digital still photographs and video. Based on these field observa-
tions, we initially defined a set of 16 categories, some of which
appear or were aggregates of categories in Table I. We ended up
using all but the foredune category in the final set as the basis
of our supervised classification models (primarily because the
foredune vegetation in early May will typically be nascent and
sparse or completely absent). After the May and August 2001
surveys, two additional categories were added (Table I): Peat
outcrop andScirpus robustus, and we split two aggregate cat-
egories into their primary constituent plant species: backdune
becameAndropogon spp.andAmmophila breviligulata, and the
thicket vegetation was separated into Pine/Hardwood complex
andMyrica cerifera-dominated thicket. We created spectral li-
braries from individual HyMAP spectra extracted at the associ-
ated waypoint, or where appropriate, small regions of interest
(ROIs) bounded by GPS waypoints. After the DGPS data were
collected, points, lines, and areas were available with an accu-
racy estimated to be 1–5 m, similar to the spatial resolution
of the May HyMAP data. These were used to train and test su-
pervised automatic classification models more rigorously as de-
scribed below. The DGPS ground data also were used to im-
prove georectification of the imagery.

IV. M ETHODS

Both supervised and unsupervised classification models of
the land cover were produced. In this section, we outline how
the models were produced.

A. Unsupervised Feature Extraction and Classification

Unsupervised feature extraction algorithms were used for two
purposes in this study. In both cases, these fulfilled the role

TABLE I

of dimensionality reduction as a precursor stage prior to the
final classification algorithm, either unsupervised or supervised
(Fig. 3). The two unsupervised feature extraction algorithms that
we used were the projection pursuit (PP) algorithm described in
[8] and the well-known principal component analysis (PCA) al-
gorithm [47] that is popular in the remote sensing literature (e.g.,
see [23] and [44], and many others).

The underlying philosophies of PP and PCA are quite dif-
ferent. PCA uses the directions of maximal variance and derives
an orthonormal set of basis vectors to identify significant struc-
ture in the data; these views of the data are not always easily
interpreted with respect to specific underlying categories be-
cause of the orthogonality requirement [7], [8], [14]. Because
PCA looks for directions of maximal variation in the data, it is
incapable of detecting multimodal and other non-Gaussian de-
partures that do not happen to be parallel, or nearly parallel, to
the principal axes of the projected data distribution. In contrast,
PP [7]–[10], [12], [20], [21], [46] uses higher order statistical
information to overcome this difficulty and identify directions
in which the projected data distribution (view) is non-Gaussian
or multimodal.

Only within the last ten years has PP been applied in the field
of remote sensing (see [2]–[5], [7], [8], [25], [29], and [30]) and
in other disciplines (see [19], [26], [33], and [34]). The PP al-
gorithm described in [8] (the PP algorithm used in this paper)
is based on an algorithm originally proposed in [20]. However,
in [8], projections are optimized simultaneously rather than in
residual subspaces, as is sometimes the case in PP algorithms
[21], [24], and projections are nonlinear, in order to remove sen-
sitivity to outliers, rather than the linear form found in [20]. Al-
though further details are provided in [8], the basic idea is that
a cost function, emphasizing both intracluster spread and com-
pactness within each cluster, is to be optimized. This function
of the projected data distribution is the product of two func-
tions, one measuring compactness of the data projection within
a particular search scale and another measuring the spread of
the data in that projection. The user defines a range of search
scales, , that correspond to fractions of the standard deviation
of projected data distributions onto initially selected random di-
rections (the projection vectors) in pattern input space;is
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Fig. 4. (Top, left) Sixteen-category land cover supervised BPCE classification based on 112 georeferenced HyMAP spectral end-members labeled fromGPS
field surveys in October and December, 2000. Prediction of salt marsh vegetation in the north end, and many of the marsh and swale categories to the south appear
consistent. Gaps in the center of salt marsh zones to the north are areas of heavy inundation which were declared as water by the model. Biggest errors occurred
for Phragmites australis, Juncus roemerianus, andUniola paniculata, all of which had high false-alarm rates. (Top, right) Nineteen-category supervised land
cover classification based on 3656 HyMAP spectral end-members, labeled from DGPS and GPS surveys for training the model, showing dramatic reductionin
false-alarm rate for these categories. (Bottom, left) RGB composite of three PP projections of HyMAP spatial–spectral windows; (bottom, right) 34-category land
cover map produced by ISODATA clustering in a five-dimensional PP projection space, including the three PP projections shown in the RGB composite.

chosen at random within the user-specified range, and oneis
associated with each data projection.

The Friedman–Tukey Projection Index [20],, on which our
projection index is based, was the product of a trimmed variance

and a compactness function

Maximize (1)

(2)

(3)

with (4)

(5)

where is the th data projection of theth sample vector,
denoted , and unit projection vector ; is a step func-
tion; is a scalar compactness or cluster scale; is a
monotonically decreasing function of the distance between pro-
jected sample pairs ; is the number of samples; and

the number of outliers removed in the trimmed variance. We
replaced their projection index with

Maximize (6)

(7)

(8)
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Fig. 5. Extract from four land cover classifications, showing results for the southern end of Smith Island. (Top, left) BPCE model based on original 112 HyMAP
spectral end-members, shows high false-alarm rate forPhragmites australis, Juncus roemerianus, andUniola paniculata. (Bottom, left) BPCE classification using
3656 spectral end-members with improved georeferencing, showing dramatic reduction in false alarms; model also discriminates some dune vegetation types, and
separatesMyrica ceriferafrom Pine/Hardwood complex. (Top, right) PP-BPCE composite, using expanded spectral set, and (bottom, right) PCA-BPCE composite
trained on same. PCA-BPCE shows higher rate of false alarms forPhragmites australisthan PP-BPCE.

with

(9)

(10)

where

constants (11)

(12)

where is a continuous compactness function, of a nonlinear
projection, , measures spread by sampling pairs of
projections and approaches asymptotically a constant weight
outside scale ; and signifies expected value
over projected sample pairs. Other differences included 1)
optimization of multiple projections at the same time, rather
than serially, and the use of a coupling matrix that is
adjusted via gradient ascent to maximize the relative entropy of
the data projections, and 2) our use of a saturating nonlinearity

to remove sensitivity to outliers, meaning that all data points

can be included. Each compactness function has
a clustering search scale associated with it. Each is
obtained by multiplying an estimate of the initial standard
deviation of the projected data, with a random fraction drawn
from a user-determined search range. We optimizedby
stochastic gradient ascent in .

While the approach that we defined in [8] does not specifi-
cally aim to derive an orthonormal PP filter set, it did incorpo-
rate a mechanism for decorrelating projections in the stochastic
optimization process. Essentially, a coupling matrix, labeled
above, is defined between the projections, and this matrix is si-
multaneously optimized along with the projections in such a
way that the relative entropy between the projections is maxi-
mized (decorrelation). The degree of decorrelation can be con-
trolled by altering the size of the initial coupling and the relative
rates of optimization of the relative entropy cost function used
for the coupling and the PP cost function used for the projec-
tions. Additional implementation details can be found in [6] and
[8].

To optimize the unsupervised PP and PCA filters, we used
either the end-members associated with our GPS and DGPS
ground data surveys or, in some instances, larger spectral sub-



2320 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 10, OCTOBER 2002

Fig. 6. Models associated with upland thickets and tree stands for (top row, left) PP-ISODATA and (top row, right) the first BPCE model based on 112 spectral
samples. Distributions for the two are largely consistent, with the exception that the unsupervised approach has included an area of glint in the surfzone of the
eastern shore. (Middle row, left) Spectral reflectance plots for HyMAP data at GPS waypoints associated withMyrica cerifera; (middle row, right) mean and
standard deviation of PP-ISODATA category (includes glint zone); (bottom row, left) mean and standard deviation of upland thicket and tree stands distribution
predicted by the BPCE model; (bottom row, right) ASD reflectance measurement ofMyrica ceriferaleaves taken on May 11, 2001. Note that the relative height
of the first peak in the NIR is somewhat higher in the ASD measurment (gaps are removed atmospheric absorption windows, where spectrometer counts created
numerical instabilities in the reflectance calculation), and overall reflectance is slightly higher in the ASD measurement.

sets derived from the southern end of the island that were rep-
resentative of the typical spectral variation seen in the data.
PP and PCA filters were derived from either 11 126 or
3 3 126 spatial–spectral windows. For the supervised clas-
sification models, described in Section IV-B, we always used
the spectral end-members associated with our GPS and DGPS
surveys. In the latter case, because the size and shape of these
ROIs were quite variable, we restricted ourselves to inputs that
were 1 1 126 (single-pixel spectra).

The feature extraction stage of the unsupervised classification
models considered in our experiments used either 1) projection
pursuit or 2) pincipal component analysis. The final stage of the
process was the ISODATA [45] algorithm.

B. Supervised Classification Models

In all supervised clasification models considered in this paper,
the final stage of classification was a variant of the backward
propagation of error model [41] with a cross-entropy cost func-
tion (BPCE) [40]. The BPCE cost function is

(13)
where is the desired output, either 0 or 1, for one of the cate-
gory nodes at the output of the model, andis the actual re-
sponse of the output node to a particular input pattern prop-
agated forward through the model. We use the cross-entropy
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Fig. 7. (a) Overall classification accuracies for ten candidate classification models, showing relatively similar average performance across algorithms and model
architectures.

cost function because it is less prone to local minima than the
originally proposed least mean-square (LMS) error [40], owing
to the form of the gradient used in the stochastic gradient de-
scent. Comparing this with the more commonly used LMS error,

, defined in [41], it can be seen
that the cross-entropy cost function eliminates a factor in the
gradient descent rule for the weight
vectors . Specifically, for LMS, the derivative of the transfer
function that appears in the gradient in
the last layer weights, and in earlier layers through the backprop-
agation of error, can cause the updates to become “frozen” near
zero when is antipodal to the desired response. The latter
occurs because the derivative of the transfer function has two
zero crossings. The expression is also zero when the response
is near the desired response, but it is the antipodal response that
causes the undesirable behavior. The form of (13) eliminates the
second zero crossing that causes this behavior because an extra
factor appears in the gradient due to the presence of the loga-
rithms.

One additional feature of our supervised classification models
was the use of an error-resampling buffer, which increased the
frequency with which spectra-causing misclassifications were
presented to the model. This forces filter adjustments to im-
prove the model on boundaries between land cover categories

where errors are more likely. This is particularly useful when
some categories are sparsely represented, as is the case in this
application. Details of this error-resampling buffer are beyond
the scope of this paper, but this approach tends to accelerate
model convergence and can lead to higher asymptotic classifi-
cation rates [7].

HyMAP reflectance data corresponding to the spectral end-
member sets delimited by the GPS and DGPS ground measure-
ments for each category were the input to the model. These
data were divided into three groups, one for training and two
for testing generalization, as described in greater detail in Sec-
tion V. A few unreliable bands were eliminated in the vicinity of
the two major atmospheric absorption windows. In some of the
models described in Section V, the data were first projected into
a lower dimensional set of features using either preoptimized
filters derived with the PP algorithm described in Section IV-A
or PCA. In these models, the input to the BPCE model con-
sisted of the lower dimensional feature vector (see Fig. 3); in
other models, the spectral end-members were input directly to
the BPCE model.

When PCA was the precursor stage of processing, we retained
the first 42 eigenvectors. This number of features may have been
excessive from the standpoint of noise reduction in most cate-
gories, since all but 1.7 10 of the variance is explained
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(b)

(c)

Fig. 7. (Continued).Relative category abundances for (b) cross-validation test set and (c) sequestered test set.

with this many components; however, it ensured that we would
not be discarding small-scale spectral features that might permit
discrimination of highly similar but distinct land cover types.
For the results described in this study, when PP was the pre-

cursor stage, we used 32 PP projection vectors that were first op-
timized before insertion in the end-to-end classification model.

A variety of model architectures and complexities were ex-
plored using this framework, and the performance of a set of
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Fig. 7. (Continued).Performance versus category for the ten models: (d) cross-validation test set.

ten examplar models is shown in Section V. An analysis of the
variability in the models suggested that smoothing in functional
(classifier) space might achieve more reliable results.

V. RESULTS AND DISCUSSION

Both supervised and unsupervised classification models of
the land cover were produced. Of these, the first supervised
classification maps consisted of 16 of the 20 land cover cate-
gories in Table I, with one aggregate category that combined
Andropogon spp.and Ammophila breviligulatainto a “back-
dune” category. These first models used 112 ground-referenced
spectral end-members (Fig. 4). Many of the categories, such
asMyrica ceriferaThicket,Distichlis spicata, Spartina alterni-
flora, Backdune vegetation, “Wrack” (Fig. 2) appear to have
produced consistent results based on our field observations and
historical data [32], [35]. A few categories were problematic,
however, and these includedPhragmites australis, Juncus roe-
merianus, andUniola paniculata, all of which had high false-
alarm rates. Our first models did not attempt to distinguish the
Myrica ceriferathicket from the pine-hardwood complex, par-
ticularly sinceMyrica cerifera typically appears in the under-
story of these tree stands (Fig. 2), and our field surveys had not
at that point sufficiently documented the location of represen-
tative pine and hardwood stands. Subsequent models described
below did include a distinction between these two land cover
types after additional ground data had been acquired.

After the development of the first automatic land cover
models, we visited the island to obtain additional survey data
for validating the results. During the visit between May 7–11,
2001, a year from the time of the initial HyMAP data acquisi-
tion, we collected ASD FRin situ spectra and a large number
of additional survey points (examples of ASD spectra appear
in Figs. 6 and 8). Followup visits in August and October 2001
and May 2002 (while this paper was being revised) established
more accurate ground data using DGPS as described above.
Although the temporal gap between airborne and ground
data acquisitions is not ideal, the interval is short enough for
many of the categories that survey data would still be reliable.
Exceptions to this are mudflats/salt pannes and wrack, although
the dominant distribution of wrack at the mean high tide level
is relatively stable.

The second set of supervised classification models that we
produced was comprised of 19 of the 20 categories (Figs. 4 and
5) listed in Table I, omitting the foredune vegetation, which is
often sparse or nascent in the early part of May in our study
area. (Models described in future papers using PROBE2 data
acquired in the summer, when this vegetation is fully present,
will include this category.) In these experiments, we took ad-
vantage of the additional spectral data labeled during the DGPS
surveys. The new experiments with the expanded set of labeled
spectra included 3656 training samples spread across the 19 cat-
egories previously described. Additionally, two test sets were
set aside, one for cross validation, which was used to deter-
mine a stopping point for optimization with the training set, and
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Fig. 7. (Continued).Performance versus category for the ten models: (e) sequestered test set.

one sequestered test set, used as a second estimate of expected
generalization capability. The cross-validation test set contained
2049 spectral samples, while the sequestered test set consisted
of 2836 spectral samples. These models showed immediate im-
provement because of the improved georectification and larger
set of georeferenced spectral end-members that were used to
train these models. Particularly noticeable was the large reduc-
tion in false-alarm rates forPhragmites australis, Juncus roe-
merianus, andUniola paniculata. Heavily inundated portions of
the northern salt marsh that were declared as water in the earlier
models are now either declared asSpartina alternifloraor Mud-
flat, and the surf zone, where glint was present is now correctly
labeled as Water, rather than Beach/sand (this is a high–tide re-
sult, so much of the beach is under water). The amount of Mud-
flat declared is probably too large and is the result of a number
of factors, including the early stage of growth, the sparseness
of the Spartina alterniflorain areas of heavy inundation, the
fact that spectra used to model the Mudflat category may also
have been partially inundated, and the occurence in mudflats of
sparse vegetation or small deposits of wrack. Nevertheless, the
overall categorization ofSpartina alterniflorain the northern
end of the island is significantly improved.

Fig. 4 illustrates the unsupervised approach, depicting an
RGB composite of three PP projections and a 34-category
PP-ISODATA category map derived from this and two other
PP projections. In contrasting this with the supervised classi-
fications shown in Fig. 4, it can be seen that a number of the
categories in the two approaches are correlated, although in

some cases the PP-ISODATA map has grouped two or more
categories that are distinct BPCE categories, e.g., backdune
vegetation and “wrack” are grouped in the PP-ISODATA
map. In some instances, the opposite is true. For example, the
Spartina alternifloracategory was divided into two groups in
the PP-ISODATA model, while it is, of course, a single distri-
bution in the supervised BPCE classifications. The distinction
made by the PP-ISODATA may be related to differences asso-
ciated with short versus tall forms of theSpartina alterniflora
(Fig. 2). Taller forms tend to be located near the berm edge of
creeks and channels in the salt marsh at the northern end of
Smith Island, while shorter forms are found in the interior of
the salt marsh where elevation is lower and tidal inundation
greater. Fig. 6 compares the distribution ofMyrica cerifera
and tree stands predicted by the original BPCE model using
112 spectral training samples and the PP-ISODATA category
associated with these vegetation types. While the distributions
are similar, one principal difference is that the PP-ISODATA
has aggregated an area strongly affected by glint, and this leads
to distortions when compared with the BPCE-predicted model
and ASD FR in situ measurements. Several PP-ISODATA
categories are coherent in structure but unlabeled at this point,
pending further survey efforts.

A more exacting test of accuracy was made possible by the
DGPS data that we collected on Smith Island in follow-on sur-
veys. Although we have taken ground data on five of the Virginia
Coast Reserve barrier islands during these subsequent visits, we
have spent roughly half of that time on Smith Island. While
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Fig. 7. (Continued).Performance versus category for the ten models: (f) typical confusion matrix from the first candidate model.

additional data will be needed to validate PROBE2 data ac-
quired in other seasons, these DGPS data, nevertheless, pro-
vided us a much higher degree of precision in determining rel-
ative classification accuracies on Smith Island. As described
above, data labeled during the GPS and DGPS surveys were
divided into training data, cross-validation data (used to stop
training of the supervised models), and sequestered test data,
and 19 of the categories listed in Table I were used in the models.
Ten candidate models were developed using the algorithms de-
scribed in Section IV. Of the ten portrayed in Fig. 7, the first five
were BPCE models of varying complexity; models six and seven
were composite PP–BPCE models, models eight and ten were
BPCE–BPCE composite models, pooling the results of several
BPCE and BPCE composite models, and model nine was a
PCA–BPCE composite. While overall accuracy for the training
data reached as high as 90% for the training data in some of
these classifications, a more important measure is the extent to
which these models generalize to sequestered test data when
challenged. Overall accuracy ranged between 72% and 90% for
the training set, between 71% and 80% for the Cross-Valida-
tion Set, and between 58% and 69% for the sequestered test set.
Fig. 7 compares the performance of a set of candidate models
that were produced for Smith Island using the expanded spectral
end-member sets derived from the DGPS and GPS surveys.

Relative abundance of categories in the training and test sets
is also reported in Fig. 7. It shows that for the cross-validation
set, in 13 of the 19 categories, one or more models lie within
the range between 65% and 95% accuracy, while 14 fall within
the range between 65% and 98% in the sequestered test set. Not
surprisingly, some of the dominant categories such asDistichlis
spicata, Myrica ceriferaThicket, Water, Pine/Hardwood Com-
plex, and Wrack are at the top end of this range. At the same
time, there is a high degree of variability in the models. While
part of this is due to differences in algorithms, a significant con-
tribution is due to the high degree of spectral overlap in many
of the categories present in the early part of the growing season.
One surprising result is the performance for the invasive plant
Phragmites australis. In both test sets, for the categoryPhrag-
mites australis, at least one model exceeds the 65% threshold,
obtaining 73% and 68% accuracy respectively on the cross-val-
idation and sequestered test sets. In the southern end of Smith
Island, this invasive species typically grows in the ecotone be-
tween thicket and the marsh vegetation (Fig. 8) and is, therefore,
difficult to detect due to mixing with other categories, such as
Myrica ceriferaThicket. The left-hand column of spectral plots
in Fig. 8 portrays this mixing, comparing the spectral response
of HyMAP at areas known from our ground survey to consist
of exposedPhragmites, Myrica cerifera, andPhragmites aus-
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Fig. 8. (Top row photographs) ExposedPhragmites australis, Myrica ceriferathicket, andPhragmitesnear the thicket. Spectral plots, left column: (top) exposed
Phragmites australis, (middle)Phragmites australisnearMyrica cerifera, (bottom)Myrica cerifera. Spectral plots, top row: (left) Mean and standard deviation of
PP-ISODATA category associated withPhragmites australisnear thicket, and (middle) BPCE classification for allPhragmites, exposed and near thicket; (right)
ASD FR spectrum ofPhragmites australis. Spectral plots, bottom row: (left) PP-ISODATA category associated withMyrica ceriferaand tree stands, distorted by
glint grouped with the category, and (middle) BPCE clasification ofMyrica cerifera; (right) ASD FR spectrum of lower canopyMyrica ceriferaleaves.
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Fig. 9. Comparison of model performance forPhragmites australis: unsupervised versus supervised models (in red). (Top row) PP-ISODATA; (middle row) BPCE
model based on original 112 spectral samples; (bottom row) BPCE model based on expanded spectral set of 3656 training samples and improved georectification.
Also shown: areas identified asPhragmites australisduring DGPS surveys. Zoomed areas show predictions in vicinity ofPhragmitesnear thicket. PP-ISODATA
and first BPCE model based on 112 spectra were prior to improved georectification, so the fourPhragmitespatches shown (areas in yellow from DGPS) appear
shifted toward the bottom of the figure relative to the predicted distributions in the top and middle rows.

tralis adjacent to theMyrica ceriferathicket.Phragmites aus-
tralis is not one of the dominant vegetation types on this island,
which also makes it a challenging category to model. Inspec-
tion of the predicted distributions ofPhragmites australisin
Figs. 5 and 9 shows that the models based on the expanded set
of spectral end-members has achieved a substantial reduction
in false-alarm rate, when compared with the first set of models
that used 112 spectral end-members.Phragmitesis detected by
this model both along the thicket edge and in areas where it is
more exposed. The PP-ISODATA category most closely associ-
ated withPhragmites australisonly detectedPhragmitesnear
the thicket; however, looking at Fig. 9, it can be seen that it
lacked the desired specificity, tending to group other shrubs on
the edge with thePhragmites. The best result was the BPCE

model using the expanded set of spectral inputs, also shown in
Fig. 9. While the false-alarm rate could still be further improved,
it shows the most consistent prediction ofPhragmitesboth in the
open and along the thicket boundary. We conjecture that data ac-
quired on dates later in the growth cycle may eventually allow
us to reduce the false-alarm rate further. One additional observa-
tion concerning the supervised classification is that thePhrag-
mitesresults for the PP-BPCE model and PCA-BPCE model
had higher false-alarm rates than the BPCE model in isolation,
but the PP-BPCE model did have a markedly better false-alarm
rate than PCA-BPCE (Fig. 5), which is not surprising given ear-
lier arguments developed in Section IV.

Looking at the results in Fig. 5, we note that similar problems
that had existed for the categoryJuncus roemerianusin terms
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of false-alarm rate in the original BPCE classification are now
largely corrected in the models based on the expanded spectral
set with improved georeferencing.

Categories such as Beach/sand, that would ordinarily not be so
difficult to identify, were more problematic because the HyMAP
scene had a significant area of glint in the beach and surf zone on
the eastern shore of Smith Island, due to the high sun angle at the
time of the data collection, and this contributed to the high degree
ofvariability inperformanceacrossthetencandidatemodels.The
presenceoftheglintalsoeffectedperformanceforcategoriessuch
as Peat Outcrop, although this category can be challenging in and
of itself because of its presence in the surf zone, depending on
whether data are acquired near high or low tide.

Although in many areas the dune vegetation shows the
proper delineation ofAndropogon spp.toward the upland and
Ammophila brev.toward the beach, the BPCE models based on
the expanded spectral sets all tended to confuseAmmophila brev.
with theAndropogon spp.in many of the specific ROIs used to
evaluate accuracy. At this time of year, grasses and sedges such
as theseandSpartinapatens, also found in the dune environment,
are all tonally similar. For example, Fig. 7(e) shows thatSpartina
patensis most often confused with eitherDistichlis spicata, the
dominant swale grass, orAndropogon spp.Data acquired in the
early fall, when Andropogon is quite distinct visually from the
other two, is likely to improve results. Thus, we expect that the
October PROBE2 data acquisition will achieve higher accuracy
when classification models are developed.

Other sources of difficulty for these models stem from the
time of the year that the HyMAP data were acquired. At the be-
ginning of May, it is early in the growing season in the VCR, so
many vegetation communities contain a mixture of new growth
and senescent or dead vegetation from the previous growth
cycle. Distinguishing vegetation types such as, for example
Distichlis spicata from Scirpus spp., may be very difficult
to achieve spectrally at this time of year, and this probably
accounts for the fact that the majority of errors for the category
Scirpus spp.are the result of confusion withDistichlis spicata.
As we have noted earlier, tidal influences provide additional
sources of spectral variability for many of the marsh vegetation
communities because of variations in degree of inundation, and
it obviously effects the beach zone, depending on the degree of
inundation or wetting present. Many points that we acquired
in the beach zone in the first surveys were effectively under
water due to tidal stage or in an area of strong glint due to the
time of data acquisition and, therefore, could not be used in the
analysis. Although more than one model obtains a respectable
score for the category Beach/sand, the poor performance for
this category in the other models is almost certainly due to the
presence of glint.

VI. CONCLUSION

Our goal was to develop land cover maps that would be useful
to natural resource managers at higher spatial resolution than
has been available previously. Both unsupervised and super-
vised classification approaches were used to create these prod-
ucts and to evaluate their relative merits. We have seen that au-
tomatic land cover classification models can be developed suc-

cessfully from HyMAP imagery, even in the early part of the
growing season when spectral differences in vegetation may not
be as pronounced. The expectation is that a more ideal data ac-
quisition date in late summer or early fall would improve results
further. PROBE2 imagery acquired during those intervals will
be used to evaluate this conjecture. The use of a hyperspectral
sensor with spatial resolution of 4.5 m was deemed necessary in
order to be able to discriminate rapidly varying land cover types
seen, e.g., in the transition zone from the lagoonal shore to the
upland. On Smith Island, six to seven distinct vegetation zones
may occur in a distance as short as 50–75 m.

Some technical difficulties such as extensive glint present in
the HyMAP data in the beach and surf zone limited what could
be achieved given a more ideal time of day for data collection.
Other challenges stemmed from the fact that the data was ac-
quired near high tide. Despite these difficulties and the fact that
the early part of the growing season may not be the ideal time for
distinguishing many types of vegetation, we have demonstrated
success in identifying both plant communities and, in some in-
stances, individual plant species from HyMAP through our field
validation efforts with GPS, DGPS, andin situreflectance mea-
surements. Supervised classification models based on spectra
labeled during GPS and DGPS surveys were used to demon-
strate that models could discriminate 19 land cover types. Some
of these categories were defined at the plant community level,
with others being specific plant species.

Although there were differences betweenin situ measure-
ments and the airborne hyperspectral data, there were strong
correlations between spectral shape. Unsupervised models
based on a PP-ISODATA hybrid were found to agree with
the supervised models for a number of categories. In some
cases, the exploratory PP-ISODATA approach may have
identified subgroups within a major category such asSpartina
alterniflora, for which it was observed that the unsupervised
approach may be dividing the data into low and high vigor
forms of the same species. Withouta priori knowledge of pixel
labels, the PP-ISODATA approach was found to be correlated
with Phragmites australisthat grows in the margin between
marsh and upland; however, this approach did not identify
exposedPhragmites. The partial success of this exploratory
approach also benefited from the ability to input both spectral
and spatial–spectral windows. Accuracy and specificity of
supervised models based on BPCE and composite models,
especially forPhragmites australis, were found to be highly
dependent on the size of the labeled spectral training samples
and on the accuracy of the georeferencing. Increasing this
accuracy and expanding the number of spectral samples used
in training provided a significant reduction in false-alarm rate
for multiple categories, includingPhragmites. The best model
overall for Phragmitesused BPCE and the expanded set of
spectral training samples.
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